

pagesign - A Python wrapper for Age and Minisign

	Release:

	0.1.0

	Date:

	Dec 05, 2021

The pagesign (for ‘Python-age-sign’) module allows Python programs to make use of
the functionality provided by age [https://age-encryption.org/] and minisign [https://jedisct1.github.io/minisign/]. Using this module, Python programs can
encrypt and decrypt data, digitally sign documents and verify digital signatures,
manage (generate, list and delete) encryption and signing keys.

This module is expected to be used with Python versions >= 3.6. Install this module
using pip install pagesign. You can then use this module in your own code by
doing import pagesign or similar.

Deployment Requirements

Apart from a recent-enough version of Python, in order to use this module you need to
have access to a compatible versions of age-keygen, age and minisign
executables. The system has been tested with age v1.0.0 and minisign v0.8 on
Windows, macOS and Ubuntu.

Acknowledgements

The pagesign module follows a similar approach to python-gnupg [https://docs.red-dove.com/python-gnupg/] (by the same author), and uses Python’s
subprocess module to communicate with the age and minisign executables, which
it uses to spawn subprocesses to do the real work of encryption, decryption, signing
and verification.

Before you Start

pagesign works on the basis of a “home directory” which is used to store public and
private key data. (Whereas age and minisign will save created keys in files for
you, but nothing beyond that, pagesign will allow you to refer to identities using
simple names). The directory on POSIX systems is ~/.pagesign and on Windows is
%LOCALAPPDATA%\pagesign. If this directory doesn’t exist, it is created. On POSIX,
its permissions are set so only the owner has full access, and everyone else has no
access (permission mask of octal 0700).

This directory will contain an identity store (called keystore from now on, as it
mainly holds keys). On POSIX, its permissions are set so only the owner has full
access, and everyone else has no access (permission mask of octal 0600).

Getting Started

You interface to the age and minisign functionality through the following items in
the pagesign module:

	The Identity class.

	The encrypt, decrypt, ‘sign` and verify functions.

Identity Management

The Identity class represents an identity, which can either be a local identity
(which has access to secret keys and passphrases in order to decrypt and sign things)
or a remote identity (which only has public keys, so it can only be used to encrypt and
verify things).

A remote identity consists of:

	A string indicating the creation time of the identity in YYYY-mm-ddTHH:MM:SSZ
format.

	A public key (from age) for encrypting files.

	A public key (from minisign) for verifying file signatures.

	A signature ID (from minisign) - this is not currently used.

A local identity, in addition to the above, contains:

	A secret key (from age) for decrypting files.

	A secret key (from minisign) for signing files.

	A passphrase (created automatically by pagesign and used for signing).

These are stored in attributes of an Identity instance named created,
crypt_public, sign_public, sign_id, crypt_secret, sign_secret and
sign_pass. Creation of a local identities generates four keys - two secret and two
public, two for encryption/decryption and two for signing/verification.

Generating identities

To create a new local identity, you simply call

from pagesign import Identity
identity = Identity()

Once you’ve called this, the identity is in memory, but not saved anywhere. To save it,
you call its save() method with a name - just a string you choose. It could be a
simple identifier like alice or bob, or an email address.

identity.save('bob')

This saves the identity under the name bob. To get it back at a later time, pass it
to the Identity constructor:

bob = Identity('bob')

The save() method saves the local identity in a keystore which is stored in the
pagesign home directory mentioned earlier. Passing that name to the constructor just
retrieves it from the store. If you pass a name that’s not in the keystore, you will
get an error.

The keystore is currently just a plaintext file in JSON format. It relies on directory
and file permissions for keeping your secret keys secret.

Performance Issues

Key generation requires the system to work with a source of random numbers. Systems
which are better at generating random numbers than others are said to have higher
entropy. This is typically obtained from the system hardware; keys should usually be
generated only on a local machine (i.e. not one being accessed across a network),
and that keyboard, mouse and disk activity be maximised during key generation to
increase the entropy of the system.

Unfortunately, there are some scenarios - for example, on virtual machines which don’t
have real hardware - where insufficient entropy can cause key generation to be slow.
If you come across this problem, you should investigate means of increasing the system
entropy. On virtualised Linux systems, this can often be achieved by installing the
rng-tools package. This is available at least on RPM-based and APT-based systems
(Red Hat/Fedora, Debian, Ubuntu and derivative distributions).

Exporting identities

You can export the public parts of an identity to send to someone. To do this, you call
the export() method of an instance:

exported = identity.export()

This returns a dictionary which contains the public attributes of the identity, whose
keys are the attribute names mentioned earlier.

Importing identities

If you receive a dictonary representing an exported identity from someone, you can
import it into your local keystore by calling the class method Identity.imported():

alice = Identity.imported(sent_by_alice, 'alice')

This saves the remote identity in the keystore with the given name. You (bob, say)
can use this when exchanging information with alice.

Deleting identities

If you want to completely get rid of an identity, you can call the
remove_identities() function. To remove all identities from the keystore, the
clear_identities() function is used.

from pagesign import remove_identities, clear_identities

remove_identities('bob', 'alice') # removes just these two
clear_identities() # removes everything

There is no way to undo these operations, so be careful!

Listing identities

Now that we’ve seen how to create, import and export identities, let’s move on to
finding which identities we have in our keystore. This is fairly straightforward:

from pagesign import list_identities

identities = list_identities()

This returns an iterable of (name, info) tuples in random order. The name is the
identity name, and the info is a dictionary of all the identity attributes for that
identity.

The Identity class

The Identity class API is here:

	
class Identity

	Attributes

	
created

	This attribute is a string indicating when the identity was created.

	
crypt_public

	This attribute is the public key used for encryption.

	
sign_public

	This attribute is the public key used for signature verification.

	
sign_id

	This attribute is a key ID which is generated by minisign but not currently
used in pagesign.

	
sign_pass

	This attribute is a passphrase automatically generated by pagesign and used
for signing. It should not be shared with the wrong people, else they could
impersonate you when signing stuff.

	
crypt_secret

	This attribute is the private key used for decryption. It should not be shared
with the wrong people, else they can decrypt stuff meant only for you.

	
sign_secret

	This attribute is the private key used for signing. It should not be shared with
the wrong people, else they could impersonate you when signing stuff.

Methods

	
__init__(name=None)

	If name is specified, create an instance populated from data in the keystore
associated with that name. Otherwise, create a new instance with autogenerated
keys for signing and encryption (the key generation takes half a second). To
persist such an instance, call its save() method with a name of your
choice.

	
export()

	Rrturn the public elements of this instance as a dictionary. The dictionary keys
match the attribute names listed earlier.

	
save(name)

	Save this instance as a dictionary in the keystore against name, overwriting
any existing data under that name.

	
classmethod imported(public_data)

	This is a factory method which generates an Identity instance from the
dictionary public_data. The instance isn’t saved in your keystore until you
call its save() method with a name of your choice.

Encryption and Decryption

Data intended for some particular recipients is encrypted with the public keys of
those recipients. Each recipient can decrypt the encrypted data using the
corresponding private key. A recipient is denoted by a local or remote identity.

Encryption

To encrypt a message, use the encrypt function:

	
encrypt(path, recipients, outpath=None, armor=True)

	Encrypt a file at path to outpath. If outpath isn’t specified, the value of
path with ‘.age’ appended is used. If armor is True, the output file is PEM
encoded. The recipients can be a single identity name or a list or tuple of
identity names. The encrypted file will be decryptable by any of the recipient
identities.

The function returns outpath if successful and raises an exception if not.

Note

Although age supports encryption and decryption using passphrases, that
is currently not supported here because there is currently no way to pass in a
passphrase to age using a subprocess pipe.

Decryption

To decrypt a message, use the decrypt function:

	
decrypt(path, identities, outpath=None)

	Decrypt a file at path to outpath. If outpath isn’t specified, then if path
ends with .age, it is stripped to compute outpath - otherwise it has ‘.dec’
appended to determine outpath. The identities can be a single identity name or
a list or tuple of identity names.

The function returns outpath if successful and raises an exception if not.

Signing and Verification

Data intended for digital signing is signed with the private key of the signer. Each
recipient can verify the signed data using the corresponding public key.

Signing

To sign a message, use the sign() function:

	
sign(path, identity, outpath=None)

	Sign the file at path using identity as the signer. Write the signature to
outpath. If outpath isn’t specified, it is computed by appending ‘.sig’ to
path.

The function returns outpath if successful and raises an exception if not.

Verification

To verify some data which you’ve received, use the verify() function:

	
verify(path, identity, sigpath=None)

	Verify that the file at path was signed by identity using the signature in
sigpath. If sigpath isn’t specified, it is computed by appending ‘.sig’ to
path.

The function raises an exception if verification fails.

Combining operations

Often, you want to combine encryption and signing, or verification before decryption.

Using signing and encryption together

If you want to use signing and encryption together, use encrypt_and_sign():

	
encrypt_and_sign(path, recipients, signer, armor=True, outpath=None, sigpath=None)

	Encrypt and sign the file at path for recipients and sign with identity
signer. Place the encrypted output at outpath and the signature in sigpath.

If armor is True, the encrypted output is PEM encoded.

If outpath isn’t specified, it is computed by appending ‘.age’ to path.
If sigpath isn’t specified, it is computed by appending ‘.sig’ to outpath.

The function returns (outpath, sigpath)` if successful and raises an exception if
not.

Using verification and decryption together

As a counterpart to encrypt_and_sign(), there’s also verify_and_decrypt():

	
verify_and_decrypt(path, recipients, signer, outpath=None, sigpath=None)

	Verify and decrypt the file at path for recipients and signed with identity
signer. Place the decrypted output at outpath and use the signature in
sigpath.

If sigpath isn’t specified, it is computed by appending ‘.sig’ to path.
If outpath isn’t specified, it is computed as in decrypt().

The function returns outpath if successful and raises an exception if not.

Logging

The module makes use of the facilities provided by Python’s logging package. A
single logger is created with the module’s __name__, hence pagesign unless you
rename the module.

Test Harness

The distribution includes a test harness, test_pagesign.py, which contains unit
tests covering the functionality described above.

Download

The latest version is available from the PyPI [https://pypi.python.org/pypi/pagesign] page.

Status and Further Work

The pagesign module is quite usable, though in its early stages and with the API
still a little fluid. How this module evolves will be determined by feedback from its
user community.

If you find bugs and want to raise issues, or want to suggest improvements, please do
so here [https://github.com/vsajip/pagesign/issues/new/choose].

All feedback will be gratefully received.

Index

	Index

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pagesign	
 A Python wrapper for age and minisign

Index

 _
 | A
 | C
 | D
 | E
 | G
 | I
 | K
 | L
 | M
 | P
 | S
 | V

_

 	
 	__init__() (Identity method)

A

 	
 	Acknowledgements

C

 	
 	created (Identity attribute)

 	
 	crypt_public (Identity attribute)

 	crypt_secret (Identity attribute)

D

 	
 	decrypt() (in module pagesign)

 	Decryption

 	
 	Deployment

 	Download

E

 	
 	encrypt() (in module pagesign)

 	encrypt_and_sign() (in module pagesign)

 	
 	Encryption

 	Entropy

 	export() (Identity method)

G

 	
 	Getting started

I

 	
 	Identity (class in pagesign)

 	
 	imported() (Identity class method)

K

 	
 	
 Key

 	exporting

 	listing

 	performance issues

L

 	
 	Logging

M

 	
 	
 module

 	pagesign

P

 	
 	
 pagesign

 	module

S

 	
 	save() (Identity method)

 	sign() (in module pagesign)

 	sign_id (Identity attribute)

 	
 	sign_pass (Identity attribute)

 	sign_public (Identity attribute)

 	sign_secret (Identity attribute)

 	Signing

V

 	
 	Verification

 	
 	verify() (in module pagesign)

 	verify_and_decrypt() (in module pagesign)

 nav.xhtml

 Table of Contents

 		
 pagesign - A Python wrapper for Age and Minisign

_static/plus.png

_static/file.png

_static/minus.png

