
Age/Minisign Wrapper for Python
Documentation

Release 0.1.0

Vinay Sajip

Dec 05, 2021

CONTENTS

1 Deployment Requirements 3

2 Acknowledgements 5

3 Before you Start 7

4 Getting Started 9

5 Identity Management 11
5.1 Generating identities . 11
5.2 Performance Issues . 12
5.3 Exporting identities . 12
5.4 Importing identities . 12
5.5 Deleting identities . 12
5.6 Listing identities . 13
5.7 The Identity class . 13

6 Encryption and Decryption 15
6.1 Encryption . 15
6.2 Decryption . 15

7 Signing and Verification 17
7.1 Signing . 17
7.2 Verification . 17

8 Combining operations 19
8.1 Using signing and encryption together . 19
8.2 Using verification and decryption together . 19

9 Logging 21

10 Test Harness 23

11 Download 25

12 Status and Further Work 27

13 Index 29

Python Module Index 31

Index 33

i

ii

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

Release: 0.1.0
Date: Dec 05, 2021

The pagesign (for ‘Python-age-sign’) module allows Python programs to make use of the functionality provided by
age and minisign. Using this module, Python programs can encrypt and decrypt data, digitally sign documents and
verify digital signatures, manage (generate, list and delete) encryption and signing keys.

This module is expected to be used with Python versions >= 3.6. Install this module using pip install pagesign.
You can then use this module in your own code by doing import pagesign or similar.

CONTENTS 1

https://age-encryption.org/
https://jedisct1.github.io/minisign/

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

DEPLOYMENT REQUIREMENTS

Apart from a recent-enough version of Python, in order to use this module you need to have access to a compatible
versions of age-keygen, age and minisign executables. The system has been tested with age v1.0.0 and minisign v0.8
on Windows, macOS and Ubuntu.

3

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

4 Chapter 1. Deployment Requirements

CHAPTER

TWO

ACKNOWLEDGEMENTS

The pagesign module follows a similar approach to python-gnupg (by the same author), and uses Python’s
subprocess module to communicate with the age and minisign executables, which it uses to spawn subprocesses
to do the real work of encryption, decryption, signing and verification.

5

https://docs.red-dove.com/python-gnupg/

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

6 Chapter 2. Acknowledgements

CHAPTER

THREE

BEFORE YOU START

pagesign works on the basis of a “home directory” which is used to store public and private key data. (Whereas
age and minisign will save created keys in files for you, but nothing beyond that, pagesign will allow you to refer to
identities using simple names). The directory on POSIX systems is ~/.pagesign and on Windows is %LOCALAPP-
DATA%\pagesign. If this directory doesn’t exist, it is created. On POSIX, its permissions are set so only the owner has
full access, and everyone else has no access (permission mask of octal 0700).

This directory will contain an identity store (called keystore from now on, as it mainly holds keys). On POSIX, its
permissions are set so only the owner has full access, and everyone else has no access (permission mask of octal 0600).

7

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

8 Chapter 3. Before you Start

CHAPTER

FOUR

GETTING STARTED

You interface to the age and minisign functionality through the following items in the pagesign module:

• The Identity class.

• The encrypt, decrypt, ‘sign` and verify functions.

9

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

10 Chapter 4. Getting Started

CHAPTER

FIVE

IDENTITY MANAGEMENT

The Identity class represents an identity, which can either be a local identity (which has access to secret keys and
passphrases in order to decrypt and sign things) or a remote identity (which only has public keys, so it can only be used
to encrypt and verify things).

A remote identity consists of:

• A string indicating the creation time of the identity in YYYY-mm-ddTHH:MM:SSZ format.

• A public key (from age) for encrypting files.

• A public key (from minisign) for verifying file signatures.

• A signature ID (from minisign) - this is not currently used.

A local identity, in addition to the above, contains:

• A secret key (from age) for decrypting files.

• A secret key (from minisign) for signing files.

• A passphrase (created automatically by pagesign and used for signing).

These are stored in attributes of an Identity instance named created, crypt_public, sign_public, sign_id, crypt_secret,
sign_secret and sign_pass. Creation of a local identities generates four keys - two secret and two public, two for
encryption/decryption and two for signing/verification.

5.1 Generating identities

To create a new local identity, you simply call

from pagesign import Identity
identity = Identity()

Once you’ve called this, the identity is in memory, but not saved anywhere. To save it, you call its save() method with
a name - just a string you choose. It could be a simple identifier like alice or bob, or an email address.

identity.save('bob')

This saves the identity under the name bob. To get it back at a later time, pass it to the Identity constructor:

bob = Identity('bob')

The save() method saves the local identity in a keystore which is stored in the pagesign home directory mentioned
earlier. Passing that name to the constructor just retrieves it from the store. If you pass a name that’s not in the keystore,
you will get an error.

11

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

The keystore is currently just a plaintext file in JSON format. It relies on directory and file permissions for keeping
your secret keys secret.

5.2 Performance Issues

Key generation requires the system to work with a source of random numbers. Systems which are better at generating
random numbers than others are said to have higher entropy. This is typically obtained from the system hardware; keys
should usually be generated only on a local machine (i.e. not one being accessed across a network), and that keyboard,
mouse and disk activity be maximised during key generation to increase the entropy of the system.

Unfortunately, there are some scenarios - for example, on virtual machines which don’t have real hardware - where
insufficient entropy can cause key generation to be slow. If you come across this problem, you should investigate means
of increasing the system entropy. On virtualised Linux systems, this can often be achieved by installing the rng-tools
package. This is available at least on RPM-based and APT-based systems (Red Hat/Fedora, Debian, Ubuntu and
derivative distributions).

5.3 Exporting identities

You can export the public parts of an identity to send to someone. To do this, you call the export() method of an
instance:

exported = identity.export()

This returns a dictionary which contains the public attributes of the identity, whose keys are the attribute names men-
tioned earlier.

5.4 Importing identities

If you receive a dictonary representing an exported identity from someone, you can import it into your local keystore
by calling the class method Identity.imported():

alice = Identity.imported(sent_by_alice, 'alice')

This saves the remote identity in the keystore with the given name. You (bob, say) can use this when exchanging
information with alice.

5.5 Deleting identities

If you want to completely get rid of an identity, you can call the remove_identities() function. To remove all identities
from the keystore, the clear_identities() function is used.

from pagesign import remove_identities, clear_identities

remove_identities('bob', 'alice') # removes just these two
clear_identities() # removes everything

There is no way to undo these operations, so be careful!

12 Chapter 5. Identity Management

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

5.6 Listing identities

Now that we’ve seen how to create, import and export identities, let’s move on to finding which identities we have in
our keystore. This is fairly straightforward:

from pagesign import list_identities

identities = list_identities()

This returns an iterable of (name, info) tuples in random order. The name is the identity name, and the info is a dictionary
of all the identity attributes for that identity.

5.7 The Identity class

The Identity class API is here:

class Identity
Attributes

created
This attribute is a string indicating when the identity was created.

crypt_public
This attribute is the public key used for encryption.

sign_public
This attribute is the public key used for signature verification.

sign_id
This attribute is a key ID which is generated by minisign but not currently used in pagesign.

sign_pass
This attribute is a passphrase automatically generated by pagesign and used for signing. It should not be
shared with the wrong people, else they could impersonate you when signing stuff.

crypt_secret
This attribute is the private key used for decryption. It should not be shared with the wrong people, else
they can decrypt stuff meant only for you.

sign_secret
This attribute is the private key used for signing. It should not be shared with the wrong people, else they
could impersonate you when signing stuff.

Methods

__init__(name=None)
If name is specified, create an instance populated from data in the keystore associated with that name.
Otherwise, create a new instance with autogenerated keys for signing and encryption (the key generation
takes half a second). To persist such an instance, call its save() method with a name of your choice.

export()
Rrturn the public elements of this instance as a dictionary. The dictionary keys match the attribute names
listed earlier.

save(name)
Save this instance as a dictionary in the keystore against name, overwriting any existing data under that
name.

5.6. Listing identities 13

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

classmethod imported(public_data)
This is a factory method which generates an Identity instance from the dictionary public_data. The
instance isn’t saved in your keystore until you call its save() method with a name of your choice.

14 Chapter 5. Identity Management

CHAPTER

SIX

ENCRYPTION AND DECRYPTION

Data intended for some particular recipients is encrypted with the public keys of those recipients. Each recipient can
decrypt the encrypted data using the corresponding private key. A recipient is denoted by a local or remote identity.

6.1 Encryption

To encrypt a message, use the encrypt function:

encrypt(path, recipients, outpath=None, armor=True)
Encrypt a file at path to outpath. If outpath isn’t specified, the value of path with ‘.age’ appended is used. If
armor is True, the output file is PEM encoded. The recipients can be a single identity name or a list or tuple of
identity names. The encrypted file will be decryptable by any of the recipient identities.

The function returns outpath if successful and raises an exception if not.

Note: Although age supports encryption and decryption using passphrases, that is currently not supported here
because there is currently no way to pass in a passphrase to age using a subprocess pipe.

6.2 Decryption

To decrypt a message, use the decrypt function:

decrypt(path, identities, outpath=None)
Decrypt a file at path to outpath. If outpath isn’t specified, then if path ends with .age, it is stripped to compute
outpath - otherwise it has ‘.dec’ appended to determine outpath. The identities can be a single identity name or
a list or tuple of identity names.

The function returns outpath if successful and raises an exception if not.

15

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

16 Chapter 6. Encryption and Decryption

CHAPTER

SEVEN

SIGNING AND VERIFICATION

Data intended for digital signing is signed with the private key of the signer. Each recipient can verify the signed data
using the corresponding public key.

7.1 Signing

To sign a message, use the sign() function:

sign(path, identity, outpath=None)
Sign the file at path using identity as the signer. Write the signature to outpath. If outpath isn’t specified, it is
computed by appending ‘.sig’ to path.

The function returns outpath if successful and raises an exception if not.

7.2 Verification

To verify some data which you’ve received, use the verify() function:

verify(path, identity, sigpath=None)
Verify that the file at path was signed by identity using the signature in sigpath. If sigpath isn’t specified, it is
computed by appending ‘.sig’ to path.

The function raises an exception if verification fails.

17

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

18 Chapter 7. Signing and Verification

CHAPTER

EIGHT

COMBINING OPERATIONS

Often, you want to combine encryption and signing, or verification before decryption.

8.1 Using signing and encryption together

If you want to use signing and encryption together, use encrypt_and_sign():

encrypt_and_sign(path, recipients, signer, armor=True, outpath=None, sigpath=None)
Encrypt and sign the file at path for recipients and sign with identity signer. Place the encrypted output at outpath
and the signature in sigpath.

If armor is True, the encrypted output is PEM encoded.

If outpath isn’t specified, it is computed by appending ‘.age’ to path. If sigpath isn’t specified, it is computed by
appending ‘.sig’ to outpath.

The function returns (outpath, sigpath)` if successful and raises an exception if not.

8.2 Using verification and decryption together

As a counterpart to encrypt_and_sign(), there’s also verify_and_decrypt():

verify_and_decrypt(path, recipients, signer, outpath=None, sigpath=None)
Verify and decrypt the file at path for recipients and signed with identity signer. Place the decrypted output at
outpath and use the signature in sigpath.

If sigpath isn’t specified, it is computed by appending ‘.sig’ to path. If outpath isn’t specified, it is computed as
in decrypt().

The function returns outpath if successful and raises an exception if not.

19

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

20 Chapter 8. Combining operations

CHAPTER

NINE

LOGGING

The module makes use of the facilities provided by Python’s logging package. A single logger is created with the
module’s __name__, hence pagesign unless you rename the module.

21

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

22 Chapter 9. Logging

CHAPTER

TEN

TEST HARNESS

The distribution includes a test harness, test_pagesign.py, which contains unit tests covering the functionality
described above.

23

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

24 Chapter 10. Test Harness

CHAPTER

ELEVEN

DOWNLOAD

The latest version is available from the PyPI page.

25

https://pypi.python.org/pypi/pagesign

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

26 Chapter 11. Download

CHAPTER

TWELVE

STATUS AND FURTHER WORK

The pagesign module is quite usable, though in its early stages and with the API still a little fluid. How this module
evolves will be determined by feedback from its user community.

If you find bugs and want to raise issues, or want to suggest improvements, please do so here.

All feedback will be gratefully received.

27

https://github.com/vsajip/pagesign/issues/new/choose

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

28 Chapter 12. Status and Further Work

CHAPTER

THIRTEEN

INDEX

• genindex

29

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

30 Chapter 13. Index

PYTHON MODULE INDEX

p
pagesign, 1

31

Age/Minisign Wrapper for Python Documentation, Release 0.1.0

32 Python Module Index

INDEX

Symbols
__init__() (Identity method), 13

A
Acknowledgements, 3

C
created (Identity attribute), 13
crypt_public (Identity attribute), 13
crypt_secret (Identity attribute), 13

D
decrypt() (in module pagesign), 15
Decryption, 15
Deployment, 1
Download, 21

E
encrypt() (in module pagesign), 15
encrypt_and_sign() (in module pagesign), 19
Encryption, 15
Entropy, 12
export() (Identity method), 13

G
Getting started, 7

I
Identity (class in pagesign), 13
imported() (Identity class method), 13

K
Key

exporting, 12
listing, 12
performance issues, 12

L
Logging, 19

M
module

pagesign, 1

P
pagesign

module, 1

S
save() (Identity method), 13
sign() (in module pagesign), 17
sign_id (Identity attribute), 13
sign_pass (Identity attribute), 13
sign_public (Identity attribute), 13
sign_secret (Identity attribute), 13
Signing, 17

V
Verification, 17
verify() (in module pagesign), 17
verify_and_decrypt() (in module pagesign), 19

33

	Deployment Requirements
	Acknowledgements
	Before you Start
	Getting Started
	Identity Management
	Generating identities
	Performance Issues
	Exporting identities
	Importing identities
	Deleting identities
	Listing identities
	The Identity class

	Encryption and Decryption
	Encryption
	Decryption

	Signing and Verification
	Signing
	Verification

	Combining operations
	Using signing and encryption together
	Using verification and decryption together

	Logging
	Test Harness
	Download
	Status and Further Work
	Index
	Python Module Index
	Index

